

Health Research Symposium 2021

Implementing Evidence-based Research in the Era of COVID-19 and other Global Health Challenges

Implementing Research Findings in Clinical Practice

23 November 2021

Prof. Paul KS Chan
Department of Microbiology
The Chinese University of Hong Kong

COVID190107

Comprehensive clinical, virological, microbiological, immunological and laboratory monitoring of patients hospitalized with Coronavirus Diseases (COVID-19)

David Hui

Grace Lui

Albert Li

Renee Chan

CK Wong

COVID19F06

Lowell Ling

medical and health care

Early biomarkers in SARS-CoV-2 infection:

correlation with short/medium/long-term

acute patient management and long-term

clinical outcomes, and implications on

Martin Wong

Christopher Lai

Rita Na

Public Health Laboratory Services Branch

Performance of self-sampling options

程序:

1. 預備以下急症室/門診 所提供的物品:一個樣 本瓶·兩個樣本袋·紙 巾

2. 以肥皂及清水洗手或 以酒精搓手液潔手

3. 檢查樣本瓶上的個人 資料是否正確

4. 打開樣本袋及樣本瓶 蓋

5. 於喉咙發出「Kruuua」 的聲音以清出來自咽 喉的唾液

6. 除下外科口罩, 將唾液 7. 戴上外科口罩 吐入樣本瓶內,避免睡 液沾到樣本瓶外面。 (如量太少,重覆以上 步驟)

8. 蓋好及扭緊樣本瓶 蓋,確保沒有滲漏

9. 用紙巾抹乾淨樣本瓶 表面

10. 將樣本瓶放入樣本袋 內,確保瓶身直立沒有 渗漏,並以肥皂及清水 洗手或以酒精搓手液 潔手

563 serial samples:

150 deep throat saliva (DTS)

309 pooled nasopharyngeal & throat swabs (NPSTS)

104 sputum

2 hospitals: PWH & UCH

50 COVID confirmed patients

All specimens collected during virus shedding period were included

Sputum

Pooled nasopharyngeal + throat swabs (NPSTS)

Sputum

Overall

	Positive rate	
	Per specimen (N=563)	Per patient (mean) (N=50)
Deep throat saliva (DTS)	68.7%	72.3%
Pooled nasopharyngeal & throat swabs (NPSTS)	80.9%	82.6%
Sputum	89.4%	91.7%

CU Medicine HONG KONG

Time of collection

Severity

Head-to-head comparison Synchronized specimens (collected on the same day)

- ☐ Significantly **higher** virus conc. at **Day 6-10** for all specimen types
- □ DTS yields the lowest virus conc. for nearly all time frames

Day from illness onset

Correlation ∞ **sputum**

DTS False-Negative Rate

48 DTS collected 1st week

☐ Sputum producers: 8.3%

□ Non-sputum producers: **22.2%**

DST **False-Negative** rate:

- > 2.6 x 1 in patients without sputum
- ➤ 70% patients not produce sputum in 1st week

Deep throat saliva

Mouth gargle with saline

Self-collect specimen - mouth gargle with saline

Gargle with saline vs. deep throat saliva (DTS)

PWH: 49 COVID patients

2 paedi (12 & 17 yr)

109 synchronized samples

Self-collect specimen – nasal epithelial lining fluid (NELF)

Self-collect specimen – nasal epithelial lining fluid (NELF)

Sensitivity

94% c.f. Nasopharyngeal + throat swabs (NPSTS)
1.4x higher than saliva (DTS)

Stability

Over 3 days at room temp.

NELF

A good option of self-collect specimen for older children

Early immune markers in COVID-19

Cytokine markers in COVID-19

40 patients (24-72 yr, 53% male, 18% smokers)

- 8 mild (no pneumonia)
- 15 moderate (pneumonia)
- 17 severe/critical (O₂ / ventilation)

Early phase

<7 days from illness onset

Late (critical) phase

8-12 days from illness onset

40 cytokines

sCD40L, EGF, Eotaxin/CCL11, FGF-2, Flt-3 ligand, Fractalkine, G-CSF, GM-CSF, GRO- α , IFN- α 2, IFN- γ , IL-1 α , IL-1 β , IL-1RA, IL-2, IL-3, IL-4, IL-5,IL-6 IL-7, IL-8, IL-9, IL-10, IL-12 (p40), IL-12 (p70), IL-13, IL-15, IL-17A, IL-18, IP-10, MCP-1, MCP-3, MDC (CCL22), MIG/CXCL9, MIP-1 α , MIP-1 β , TGF- α , TNF- α , TNF- β and VEGF.

11 cytokines consistently different in both early- and late-phase

4 cytokines associate with severity only in early phase, not late-phase

7 cytokines associate with severity **only** in late-phase, **not** early-phase

Predict severe/critical infections

Early biomarker < 7 days

Late biomarker 8-12 days

Potential biomarker

Critical patients – Late phase (cytokine at ICU admission)

Subgenomic RNA

Diagnostic PCR ⇒ Genomic RNA

???

Monitoring PCR ⇒ Sub-genomic RNA

Subgenomic RNA profile

376 resp. samples from individual COVID-19 patients

Ct values: 12.2 – 32.5

Collection: median 6 (0-31) days from onset

Asymptomatic: 7%

Mild: 35%

Moderate (pneumonia): 37%

Critical (O₂ /ventilation): 21%

Catch all – Next Generation Sequencing

124 serial samples (2-47 days from onset)

- 45 upper resp.
- 37 lower resp.
- 42 stool

10 patients

- 4 mild
- 5 moderate
- 1 critical

Real-time PCR targeting specific subgenomic RNA

Subgenomic RNA profile

IVb: TRS-L independent, intra-gene, out-of-frame (4.2%)

Full set of 9 subgenomic RNAs

Upper & lower resp. & stool diagnostic PCR +ve for 2-3 weeks

Full-set sgRNA +ve only upto 10 day from onset

None of stool samples had full-set sgRNA

Full-set subgenomic RNA PCR +ve

- Upper resp.
- Lower resp.
- Stool

Prolonged diagnostic (genomic) PCR +ve

Full-set subgenomic RNA PCR only +ve in early samples

Full-set subgenomic RNA PCR

Became +ve again

Prolonged diagnostic PCR +ve in stool

Subgenomic RNA PCR all -ve

Holmowledgments

Grace Lui

Albert Li

Renee Chan

CK Wong

Lowell Ling

Martin Wong

Christopher Lai

Rita Ng

Public Health Laboratory Services Branch

Prince of Wales Hospital

United Christian Hospital

