

A randomized controlled trial evaluating an online intervention based on the Trans-theoretical Model in increasing seasonal influenza vaccination among community dwelling people aged ≥65 years

Dr. Johnson WANG

Assistant Professor

JC School of Public Health and Primary Care, Faculty of Medicine The Chinese University of Hong Kong

Acknowledgements

Zixin Wang ¹, Paul Shing-fong Chan ², Qingpeng Zhang ^{3, 4}, Yuan Fang ⁵, Martin C.S. Wong ¹, Fuk-yuen Yu ¹, Danhua Ye ¹, Phoenix K.H. Mo ¹

- ¹ JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China
- ² Department of Applied Social Sciences, the Hong Kong Polytechnic University, Hong Kong SAR, China
- ³ Musketeers Foundation Institute of Data Science, The University of Hong Kong, Hong Kong, China
- ⁴ Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- ⁵ Department of Health and Physical Education, The Education University of Hong Kong, Hong Kong, China

Funding source:

Health and Medical Research Fund, Health Bureau, HKSAR (Project Ref# 19181152)

Outline

- Background
- Objectives
- Methods
- Key results
- Conclusion

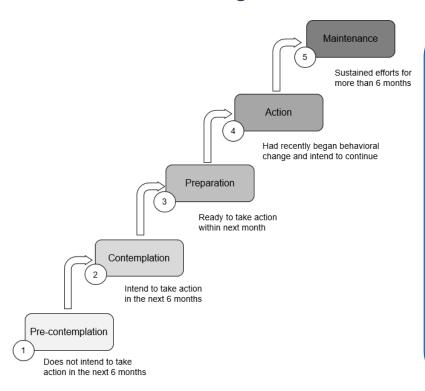
Background

Seasonal influenza vaccination (SIV)

--- an important health initiative for older adults

- Effective in preventing influenza and all-cause mortality among individuals aged ≥65 years
- Strongly recommended by the WHO and the Hong Kong Centre for Health Protection (CHP)
 - ➤ All individuals aged ≥65 years should receive SIV once every year
 - All Hong Kong residents aged ≥50 years can receive:
 - Free SIV at public hospitals/clinics
 - Subsidized SIV at private clinics
- Inadequate coverage of SIV among older adults in Hong Kong
 - **44.7%** in 2020-2021 flu season (CHP, 2023)
 - > 40.4% in 2021-2022 flu season (CHP. 2023)

Constraints of existing interventions promoting SIV for older adults



- Mailing simple and standard reminders --- small effective size
- Telephone or face-to-face educational session --- larger effective size but resource demanding and less sustainable
- Interventions tailored to one's needs and characteristics are most effective in addressing vaccine fatigue --- lack of tailored interventions
- Traditional tailored interventions --- resource demanding (need to assess needs before administrating interventions, prepare different interventions to cater the needs) and difficult to implement at large scale

Stage of changes (SOC)

--- The framework to guide our Chatbot

Stage of changes (SOC)

- A core concept of the Trans-theoretical Model
- Different health promotion strategies should be applied for people at different SOC
- Interventions tailored to one's SOC are more effective than non-SOC-tailored interventions, especially among less motivated individuals (Noar et al, 2007; Lach et al 2004)

香港中文大學醫學院

Faculty of Medicine
The Chinese University of Hong Kong

Effectiveness of SOC-tailored interventions in increasing uptake of any type of vaccination

	Experimental						Std. Mean Difference			
Study	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI	
Quinley 2004	0.27 0	.1600	811	0.17	0.2400	250	19.5%	0.55 [0.41; 0.69]	-	
Gagneur 2018	0.76 0	.1300	1140	0.69	0.1300	1249	60.3%	0.54 [0.46; 0.62]	<u> </u>	
Wynn 2021	0.75 0	.2000	291	0.65	0.2100	153	10.2%	0.49 [0.29; 0.69]		
Wang 2023	0.51 0	.3600	198	0.30	0.3300	198	9.9%	0.61 [0.41; 0.81]	-	
Total (95% CI)			2440				100.0%	0.54 [0.49; 0.59]	<u></u>	
Heterogeneity: 1	Γau² = 0; C	$Chi^2 = 0$).67, df	= 3 (P =	= 0.88); I	= 0%			1 1	
									-0.5 0 0.5	
								Standardised Mean Differen		

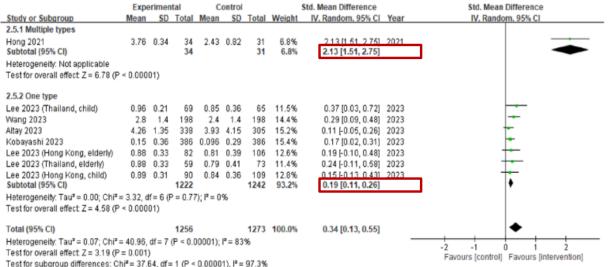
Study	Experi Mean	mental SD		Mean	Control SD		Weight	Std. Mean Difference IV, Random, 95% CI	
Gagneur 2018 (Mothers of infants) Wynn 2021 (Parents of adolescents)					0.1300 0.2100		85.5% 14.5%		-
Total (95% CI) Heterogeneity: Tau ² = 0; Chi ² = 0.19, df	= 1 (P =	: 0.66); I ²	1431 = 0%			1402	100.0%	0.53 [0.32; 0.74]	
									-0.6-0.4-0.2 0 0.2 0.4 0.9 Standardised Mean Difference

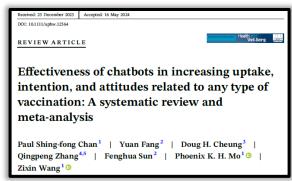
Study	Experi Mean	mental SD		Mean	Control SD		Weight	Std. Mean Difference IV, Random, 95% CI	
Quinley 2004 (Elderly)	0.27	0.1600	811	0.17	0.2400	250	66.3%	0.55 [0.41; 0.69]	-
Wang 2023 (Elderly)	0.51	0.3600	198	0.30	0.3300	198	33.7%	0.61 [0.41; 0.81]	-
Total (95% CI) Heterogeneity: Tau ² = 0; Chi ² = 0.21, df = 1 (P = 0.65); I ² = 0%				448	100.0%	0.57 [0.22; 0.92]			
			·	,					-0.5 0 0.5 Standardised Mean Differen

Findings of our meta-analysis

- 3 randomized controlled trials +
 1 quasi-experimental study
- SOC-tailored interventions are more effective than non-SOCtailored interventions or no intervention
- Similar effects applied to the subgroup of older adults

A Chatbot is suitable to deliver SOC-tailored interventions




Advantages of Chatbot

- A computerized program that acts to replicate human interaction through text, speech, and visual forms of communication (Singh 2023)
- Proactively interacts with users to improve compliance
- Automatically measure users' SOC
- Automatically select pathway of interventions based on users' SOC
- Suitable to deliver SOC-tailored interventions promoting SIV

Effectiveness of Chatbots in improving attitudes supporting vaccination uptake

Chatbot-delivered interventions could significantly improve attitudes favoring different types of vaccination

香港中文大學醫學院

Faculty of Medicine
The Chinese University of Hong Kong

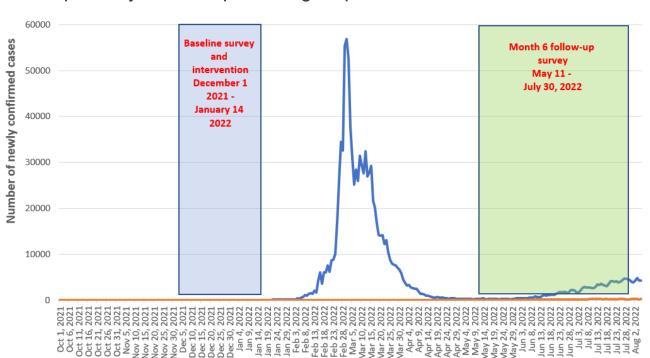
Objectives and hypothesis

Primary objective

- To evaluate the relative efficacy of a Chatbot-delivered SOC-tailored online intervention (the intervention group) compared with a Chatbot-delivered standard, non-SOC-tailored online intervention (the control group) in increasing SIV uptake among Hong Kong residents 65 years or older.
- The online intervention in both groups were delivered by a rule-based Chatbot.

Hypothesis

 The intervention group would have higher SIV uptake during the study period compared with the control group



Methods

Study design

CU Medicine HONG KONG

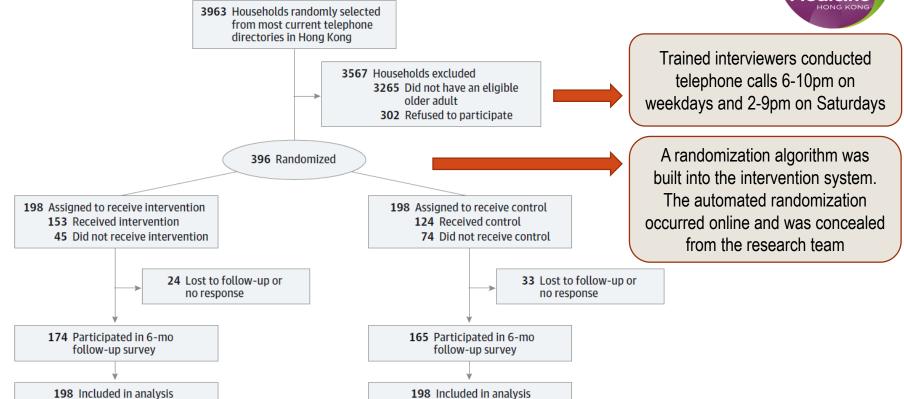
A partially-blinded parallel-group randomized controlled trial

Trial registration: ClinicalTrial.gov (NCT05155241)

COVID-19 situation during the study period in Hong Kong

Participants

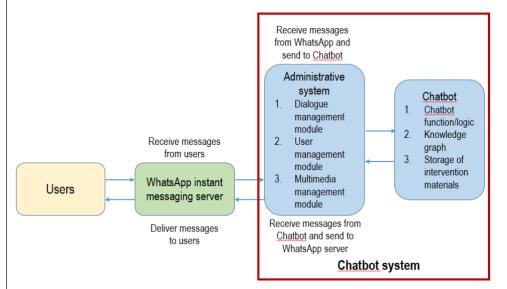
Inclusion criteria


- Aged 65 years or older
- Possession of a Hong Kong identity card
- Ability to speak Cantonese and/or Mandarin
- Willingness to participate in follow-up by telephone
- Access to a smartphone
- No SIV uptake for the 2021/2022 flu season

Exclusion criteria

- Cognitive impairment, blindness, or deafness
- Inability to communicate effectively
- With known contradictions to SIV as indicated by Hong Kong CHP
- Sample size: 198 per group (396 in total)

Study flow diagram



香港中文大學醫學院
Faculty of Medicine
The Chinese University of Hong Kong

15

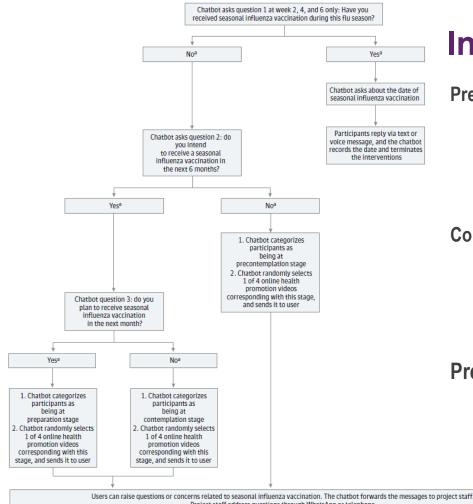
Co-creation of the Chatbot and health promotion with older adults

Architecture of the Chatbot

A mature rule-based Chatbot for smoking cessation (Wang et al, 2018)

Adaption --- informed by in-depth interviews of five Hong Kong residents aged ≥65 years Key suggestions given by the informants:

- 1) Human-machine interaction should be simple
- Using videos instead of chats to deliver complicated health promotion messages
- 3) Avoiding typing on the smartphone.


Using WhatsApp platform to implement Chatbot

Pilot testing and refining

 10 older adults were invited to use the Chatbot. Their conversation with the Chatbot was retrieved and reviewed

Intervention group

Pre-contemplation stage

Strategies: increase awareness of the importance of SIV

- High risk of influenza infection and severe consequences among older adults
- Increased risk of death associated with influenza and COVID-19 coinfection
- SIV is effective, and free SIV is available

Contemplation stage

Strategies: increase perceived pros and self-efficacy, and reduce perceived cons of SIV

- Detailed information about efficacies and safety of SIV (discussed by a primary care physician + testimonial of vaccinated older adults)
- Give recommendation and encourage participants to make plans to receive SIV (by a primary care physician)

Preparation stage

Strategies: assist with developing concrete action plan and increase self-efficacy to receive SIV

- Location and contact information of facilities providing free SIV
- Participants indicate when and where they plan to receive SIV (by clicking a box)

Control group

A standard online video (lasting 2 minutes)

- Sent by the Chatbot automatically at week 0, 2, 4, and 6
- Covering basic information about who could, when to, and where to receive SIV --- identical to information disseminated by the government through mass media channels

Outcomes

Primary outcome --- self-reported SIV uptake at Month 6

Validated by requesting participants to upload an image of SIV receipt

Secondary outcome --- SOC at baseline and Month 6

Same set of guestions used by the Chatbot

Statistical analysis

Both complete case analysis and Intention-to-treat analysis were performed

 A Markov Chain Monte Carlo method was used to impute missing values of SOC at Month 6 separately by randomized group (Sullivan et al, 2018)

Key Results

Key findings: Baseline characteristics

Socio-demographic characteristics

- Age, mean (SD): 70.2 (4.3)
- Females: 62.9%, Males: 37.1%
- Monthly household income < HK\$20,000 (US\$2,580): 74.2%

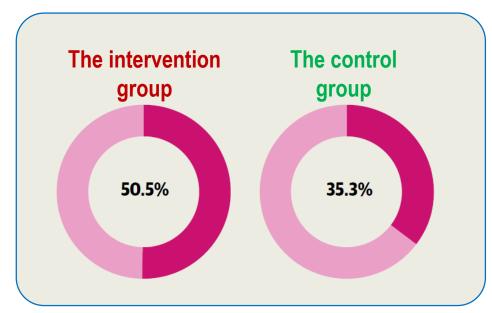
Health conditions

Presence of chronic conditions: 60.4% (hypertension: 47.7%; diabetes: 18.9%)

No. of SIV doses in the past 3 years

• 0 dose: 45.5%, 1 dose: 8.3%, 2 doses: 12.1%, 3 doses: 34.1%

SOC


- Pre-contemplation stage: 37.4%
- Contemplation stage: 22.0%
- Preparation stage: 40.6%

No between-group differences in baseline characteristics was found

Primary outcome

- SIV uptake in the past 6 months

All participants self-reported SIV uptake were able to provide receipt for verification

Intention-to-treat analysis

• 50.5% vs. 35.3%

RR: 1.43, 95%CI: 1.13, 1.80, P=.002

Complete case analysis

• 57.5% vs. 42.4%

RR: 1.35, 95%CI: 1.09, 1.69, P=.006

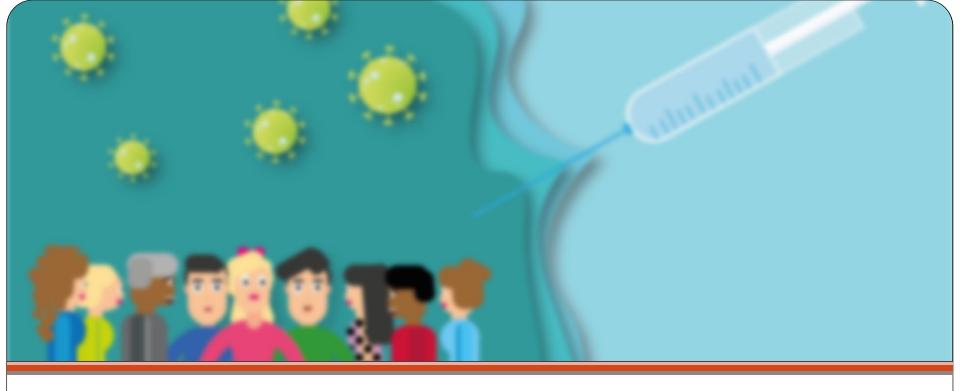
Secondary outcome - SOC

Intention-to-treat analysis	Intervention group (n=198), n (%)	Control group (n=198), n (%)	P value
SOC at Month 6			
Pre-contemplation stage	68 (34.3)	88 (44.4)	
Contemplation stage	18 (9.1)	21 (10.6)	
Preparation stage	0 (0)	9 (4.5)	
Action stage	112 (56.6)	80 (40.4)	.001
SOC score a, mean (SD)	2.8 (1.4)	2.4 (1.4)	.02
Changes in SOC score from baseline to Month 6, mean (SD)	0.7 (1.0)	0.5 (1.0)	.04

a: 1=pre-contemplation, 2=contemplation, 3=preparation, 4=action

Changes in SOC documented by the Chatbot in the intervention group

Among 117 participants in the intervention group who had completed at least two intervention sessions


- 55.6% progressed to higher SOC
- 36.8% stayed in the same SOC
- Only 7.7% went back to lower SOC

SOC-tailored interventions were useful to facilitate progression to higher SOC

Compliance and process evaluation

- More participants in the intervention group completed at least one episode of intervention than that of the control group (77.3% vs. 62.6%, P<.001)
- Process evaluation of the Chatbot was positive (among 124 participants in the intervention group)
 - Easy to interact with the Chatbot: 78.2%
 - Satisfied with the Chatbot-delivered interventions: 78.2%
 - Chatbot-delivered interventions were helpful to increase their understanding about SIV: 77.4%
 - Chatbot-delivered interventions were helpful to reduce barriers to receive SIV: 82.3%

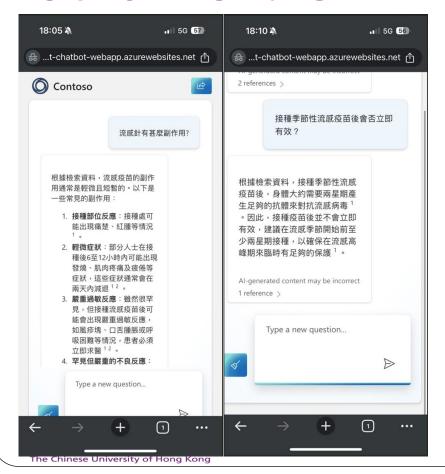
Conclusion

Conclusion

CU Medicine HONG KONG

- Theoretical and practical implications

- SOC-tailored intervention was more effective than non-SOC-tailored intervention to increase SIV uptake
- SIV uptake rate in the intervention group was higher than the overall SIV coverage among all Hong Kong residents aged 65 or above in the same flu season (50.5% vs 40.4%)
- WhatsApp + Chatbot were viable in providing health promotion that was tailored to the needs
 of older adults at different SOC
- Fully automatic --- requires fewer resources to implement


Conclusion

- Constraints and the way forward

- Constraints of rule-based conversation
 - Constraints on the input data
 - A finite set of conversation are task oriented and straightforward
 - Lack of user-initiated conversation
 - Challenges in maintaining user engagement
- As compared to rule-based conversation, free-flow conversation will enhance user experience and engagement
- Free-flow conversation powered by ChatGPT may overcome the constraints


Our SIV-ChatGPT

- The research team trained a ChatGPT based on GPT4.0
- Available as a Web App and is accessible through smartphone
- Two independent experts in vaccination behaviours evaluated the ChatGPT-generated responses to 20 randomly selected questions related to SIV
- The overall contents were correct, clear and concise to a very high degree
- An ongoing trial is evaluating the feasibility and effectiveness of the SIV-ChatGPT among older adults (ClinicalTrial.gov: NCT06679647)

Network Open...

POPULATION

147 Men, 249 Women

Chinese-speaking adults aged ≥65 y who have not received seasonal influenza vaccination

Mean age, 70.2 v

SETTINGS / LOCATIONS

Communities in Hong Kong

INTERVENTION

396 Individuals randomized

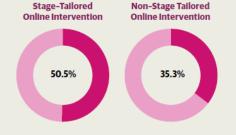
198 Stage-tailored online interventions

A rule-based chatbot provided interventions tailored to stage of changes at weeks 0, 2, 4 and 6

198 Non-stage-tailored online interventions

interventions at weeks 0, 2, 4 and 6

A rule-based chatbot provided standard


PRIMARY OUTCOME

Self-reported seasonal influenza vaccination measured at month 6

FINDINGS

Seasonal influenza vaccination uptake in the intervention group was significantly higher than the control group at month 6

Self-Reported Seasonal Influenza Vaccination:

Intent-to-treat analysis: Relative risk.1.43; 95% CI, 1.13-180; P = .002

Wang Z, Chan PS, Fang Y, et al. A chatbot-delivered online intervention to promote seasonal influenza vaccination uptake among older adults during the COVID-19 pandemic: a randomized clinical trial, JAMA Netw Open, 2023;6(9):e2332568, doi:10.1001/jamanetworkopen, 2023,32568

@ AMA

For more information, please access our paper in JAMA Network Open 2023, 6(9), e2332568.

香港中文大學醫學院

THANK YOU

Dr. Zixin WANG (Johnson)

wangzx@cuhk.edu.hk