Health Research Symposium 2024

Long noncoding RNAs in acute myeloid leukaemia Roles for classification and prognostication

IP Ho-Wan Alvin Department of Pathology Queen Mary Hospital 26 November 2024

Outline HMRF project (05160046)

- Brief background on acute myeloid leukaemia (AML) and long noncoding RNAs (IncRNAs)
- **Prognostication** in AML
- Use of machine learning to devise IncRNA
 prognostic score
- Validation and clinical application of IncRNA prognostic score

Acute myeloid leukaemia (AML): Clonal disorder of myeloid stem/progenitor cells

Normal

AML

Acute myeloid leukaemia Brief introduction

- Clonal disorder of myeloid stem/progenitor cells
- ↑ proliferation
- \downarrow differentiation
- Expansion of immature/leukaemic cells results in severe reduction in normal blood cell production, resulting in reduced normal blood cells in circulation
- Clinical problems: Anaemia, infections, bleeding

Acute myeloid leukaemia Critical information for patient management

Classification

 Subtyping permits understanding of disease behaviour and better prediction of outcome

Prognostication

- Identify features to predict outcome
- Treatment
 - Select targeted therapies
- Monitoring
 - Identify target for post-treatment monitoring

Classification of AML WHO 2022 Classification

Khoury JD et al. *Leukemia* 2022;36:1703-1719. Bullinger L et al. *J Clin Oncol* 2017;35:934-946.

Prediction of clinical outcome in AML ELN risk classification

Risk category†	Genetic abnormality
Favorable	 t(8;21)(q22;q22.1)/RUNX1::RUNX1T1†,‡ inv(16)(p13.1q22) or t(16;16)(p13.1;q22)/ CBFB::MYH11†,‡ Mutated NPM1†,\$ without FLT3-ITD bZIP in-frame mutated CEBPA
Intermediate	 Mutated NPM1†,\$ with FLT3-ITD Wild-type NPM1 with FLT3-ITD (without adverse-risk genetic lesions) t(9;11)(p21.3;q23.3)/MLLT3::KMT2A†,¶ Cytogenetic and/or molecular abnormalities not classified as favorable or adverse
Adverse	 t(6;9)(p23.3;q34.1)/DEK::NUP214 t(v;11q23.3)/KMT2A-rearranged# t(9;22)(q34.1;q11.2)/BCR::ABL1 t(8;16)(p11.2;p13.3)/KAT6A::CREBBP inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2)/ GATA2, MECOM(EVI1) t(3q26.2;v)/MECOM(EVI1) t(3q26.2;v)/MECOM(EVI1)-rearranged -5 or del(5q); -7; -17/abn(17p) Complex karyotype,** monosomal karyotype†† Mutated ASXL1, BCOR, E2H2, RUNX1, SF3B1, SRSF2, STAG2, U2AF1, and/or ZRSR2‡‡ Mutated TP53^a

- Latest addition of chromatin/spliceosome gene mutations in the adverse risk group has enabled prognostication in 15-20% more AML patients
- Is this optimal in predicting patients' outcome?

Genome vs. Transcriptome (DNA vs. RNA)

- DNA: Only detects genomic variants (spelling mistakes)
- RNA: Final common pathway that captures more effectors (or "epigenomics")

Holistic picture of the human pan-genome

https://blog.createandcraft.tv/layered-papercut-art-template/

Long noncoding RNAs Very brief introduction

- Elements of the transcriptome
 - Messenger RNAs (protein-coding genes): 2% of human genome
 - Long noncoding RNAs (IncRNAs)
 - And many more RNA subtypes...
- IncRNAs: Transcripts longer than 200 nucleotides that do not appear to have a protein-coding sequence
- Over 100,000 IncRNAs recorded in human (cf. ~20,000 protein-coding genes)

Long noncoding RNAs in AML Experimental design

- Project period: 2018-2022
- 185 adult patients with newly diagnosed AML for deep total transcriptome sequencing (between period of 2007 to 2018)
- Median follow-up: 417 days
- Detect only established IncRNAs to study clinical outcome

Long noncoding RNAs in AML Classification

- Unsupervised clustering
- Classify established AML subtypes largely in accordance with their diagnostic categories
- "Blocks of colours" imply good classification of AML subtypes using IncRNAs

Long noncoding RNAs in AML Identification of prognostic IncRNAs

- Machine learning: Lasso regression
- Identified 10 IncRNAs
- IncRNA prognostic score calculated for each patient:
 - Multiply 10 IncRNA expression level with their corresponding weighted coefficient from Lasso
 - Linearly combining their products

Long noncoding RNAs in AML Multi-variable analysis of prognostic effects in HK cohort

Prognostic value of IncRNAs in AML Interactions with current prognostic system

Prognostic value of IncRNAs in AML Interactions with current prognostic system

Validation of 10-IncRNA score Role of external data sets

- Two well-established data sets with available
 - Transcriptome data
 - Survival data
- The Cancer Genome Atlas (TCGA)
- BeatAML
- Analysed the data in **identical manners** as the discovery cohort
- Observe whether the 10-IncRNA score retains prognostic significance on multi-variable analysis

Validation of 10-IncRNA score Multi-variable analysis in TCGA cohort

Validation of 10-IncRNA score Multi-variable analysis in BeatAML cohort

Clinical translation of research findings Considerations for clinical applications

- Total transcriptome sequencing
 - Relatively expensive
 - Substantial portion of data may not have immediate clinical utility
- Enrichment of targeted genomic regions (CaptureSeq)
 - Cheaper
 - Targeted but more focused (more sequence reads to cover targeted regions)
 - Higher sensitivity

Clinical translation of research findings Design of CaptureSeq panel for leukaemias

- Genes involved in **fusion** in leukaemias
- Genes for expression profiling: Coding genes and the 10 IncRNAs

Performance of CaptureSeq panel Correlation of 10 IncRNAs between transcriptome and CaptureSeq

Validation of CaptureSeq panel Independent prognostic evaluation in 135 patients

- Period: 2019-2022
- 135 consecutively recruited newly diagnosed AML patients
- Median follow-up: 335 days
- Comparison between validation cohort vs. discovery cohort
 - Older patients, e.g. 40% vs. 17% over age 70
 - More adverse risks patients, 50% vs. 38%

Validation of CaptureSeq panel

Independent prognostic evaluation in 135 patients

Project Summary

- Use of machine learning to identify a 10-IncRNA prognostic score
- The IncRNA prognostic score can reproducibly predict clinical outcomes of AML patients, with independent effects from the currently established prognostic parameters
- Rigorous validation of the IncRNA prognostic score using large public data sets
- CaptureSeq assay is devised for clinical translation and represents a viable option for refinement of established prognostic parameters in AML
- Substantiate the clinical utility of transcriptomics in informing the practice of precision medicine in leukaemia patients

Healthcare Implications of Project

- This project provides proof-of-concept that RNA sequencing contributes to unique information to inform clinical management
- Genome (DNA) sequencing provide 1st dimension of information
- **Transcriptome (RNA)** provides an indispensable 2nd dimension, i.e. functional genomics
- Cancer classification is incorporating transcriptomic information
- Prime time to strengthen our efforts in functional genomic investigations to harness multi-omic information to empower practice of precision medicine

Acknowledgement

- Cytogenetics and Genomics Laboratory, QMH
- Prof. Jason WH Wong, SBS, HKU
- Prof. SY Leung, SClinMed, HKU
- Prof. Anskar YH Leung, SClinMed, HKU
- Prof. H Sun, Chemical Pathology, CUHK
- Fundings
 - Health and Medical Research Fund, Health Bureau, HKSAR Government
 - Hong Kong Blood Cancer Foundation
 - Centre for Oncology and Immunology under the Health@InnoHK Initiative, funded by the ITC, HKSAR Government
 - Theme-based Research Scheme (T12-702/20-N), University Grants Committee, HK