Striking a balance between cost, effectiveness and efficiency of emergency departments in Hong Kong: An integrated approach of data analytics, simulation, and system optimization

(Project No: 14151771)

Speaker: Yong-Hong Kuo

Department of Data and Systems Engineering The University of Hong Kong Email: <u>yhkuo@hku.hk</u> Website: https://www.dase.hku.hk/people/y-h-kuo

Project Co-Investigators: JMY Leung, CA Graham, AMC So, HM Meng, KKF Tsoi

Health Research Symposium 2024 26 November 2024

Research on ED Operations

- Patient waiting time prediction (Hoot et al., 2009; Sun et al., 2012; Ang et al., 2015)
- Patient prioritization
 - Triage category (Wuerz et al, 2000; Fernandes et al., 2005)
 - Patient complexity (Sprivulis, 2004; Ieraci et al., 2008; Saghafian et al. 2014; Ding et al., 2019)
 - Fast track (Hampers et al., 1999; García et al., 1995; Kausha et al., 2015; Kuo et al., 2018)
 - Patient streaming (King et al., 2006; Saghafian et al., 2012)
 - Patient scheduling (He et al., 2019)
- ED Queuing models (Green et al., 2006; Huang et al., 2015; Kamali et al., 2018)
- Simulation modeling of patient flows (Connelly and Bair, 2004; Hoot et al., 2008; Abo-Hamad and Arisha, 2013; Kuo et al., 2016; Oh et al., 2016; Vanbrabant et al., 2019)
- **Resource planning** (Ahmed and Alkhamis, 2009; Guo et al., 2017)

Aims of the Project

Measure and analyze patient flow and throughput.

- Develop and apply data-driven techniques for forecasting the ED performance.
- Develop a simulation model to represent the patient flow and processes of the ED.
- Evaluate possible changes in the processes or space-layout that might enhance the system.
- \odot Well utilize resources and improve patient experience.

Waiting time prediction

• Primary data available:

 \odot Time records of events regarding each patient visit:

- Arrival date
- Triage category (i.e., level of urgency)
- Registration start time
- Triage start time
- Consultation start time
- Departure time

 \circ Staffing level:

• Number of doctors in the ED in different hours

• Derived data:

 \odot Number of patients in the ED and different queues

Arrival rates of patients

Waiting time prediction: Flowchart of the data handling and analysis process

Kuo, Y. H., Chan, N. B., Leung, J. M., Meng, H., So, A. M. C., Tsoi, K. K., & Graham, C. A. (2020). An integrated approach of machine learning and systems thinking for waiting time prediction in an emergency department. International journal of medical informatics, 139, 104143.

Prediction Features

- Set (a) contained 11 features:
- 1. Patient's triage categories (three binary variables where each indicates if the patient is within the corresponding triage category; only urgent, semi-urgent and non-urgent patients are considered in our study);
- 2. Arrival time; and
- 3. Numbers of doctors within three hours of the patient's arrival (seven variables in total: three, two, and one hour (s) before the patient's arrival, upon the patient's arrival, and one, two, and three hour(s) after the patient's arrival).
- Set (b) contained 18 features:
- 1. All features from (a);
- 2. Number of patients in queue for triage upon the patient's arrival;
- 3. Number of patients in queue for consultation in each category upon the patient's arrival (five categories in total) and
- 4. Number of patients in queue for departure upon the patient's arrival.

Kuo, Y. H., Chan, N. B., Leung, J. M., Meng, H., So, A. M. C., Tsoi, K. K., & Graham, C. A. (2020). An integrated approach of machine learning and systems thinking for waiting time prediction in an emergency department. *International journal of medical informatics*, 139, 104143.

Actual data & models

- The **baseline model LR(bl)**, which considers only triage category and arrival time, serves as our benchmark for comparison of models.
- The four modelling approaches used in this study were
 - linear regression (LR),
 - artificial neural networks (NN),
 - support vector machines (SVM), and
 - gradient boosting machines (GB).

Kuo, Y. H., Chan, N. B., Leung, J. M., Meng, H., So, A. M. C., Tsoi, K. K., & Graham, C. A. (2020). 00:00 An integrated approach of machine learning and systems thinking for waiting time prediction in an emergency department. *International journal of medical informatics*, *139*, 104143.

	LR(bl)	LR(a)	NN(a)	SVM(a)	GB(a)	LR(b)	NN(b)	SVM(b)	GB(b)
Train Set									
R-squared	0.377	0.352	0.388	0.360	0.400	0.528	0.599	0.568	0.699
MSE	3,607	3,750	3,541	3,707	3,476	2,732	2,323	2,501	1,740
RMSE									
Category 3	22.8	23.2	22.8	23.9	22.7	22.0	21.4	22.3	18.2
Category 4	69.8	71.1	69.1	70.6	68.4	60.5	55.6	57.7	48.1
Category 5	44.8	45.3	49.5	50.0	49.7	20.8	22.7	19.8	31.4
Test Set									
R-squared	0.268	0.249	0.274	0.238	0.271	0.374	0.410	0.401	0.429
MSE	5,618	5,764	5,575	5,851	5,598	4,803	4,528	4,597	4,383
RMSE									
Category 3	45.8	45.9	45.7	46.7	45.6	44.6	44.8	45.1	44.3
Category 4	82.9	84.2	82.6	84.7	82.9	76.4	74.0	74.5	72.5
Category 5	106.5	100.9	103.4	105.1	101.9	89.1	78.7	81.2	86.5
RMSE / SD									
Category 3	0.499	0.508	0.499	0.523	0.497	0.481	0.468	0.488	0.398
Category 4	0.786	0.801	0.778	0.795	0.77	0.681	0.626	0.65	0.542
Category 5	0.515	0.521	0.569	0.575	0.571	0.239	0.261	0.228	0.361
% Difference between (b) and (a) Train Set									
R-squared	NA	NA	NA	NA	NA	50.00%	54.38%	57.78%	74.75%
MSE	NA	NA	NA	NA	NA	-27.15%	-34.40%	-32.53%	-49.94%
RMSE									
Category 3	NA	NA	NA	NA	NA	-5.17%	-6.14%	-6.69%	-19.82%
Category 4	NA	NA	NA	NA	NA	-14.91%	-19.54%	-18.27%	-29.68%
Category 5	NA	NA	NA	NA	NA	-54.08%	-54.14%	-60.40%	-36.82%
Test Set									
R-squared	NA	NA	NA	NA	NA	50.20%	49.64%	68.49%	58.30%
MSE	NA	NA	NA	NA	NA	-16.67%	-18.78%	-21.43%	-21.70%

Kuo, Y. H., Chan, N. B., Leung, J. M., Meng, H., So, A. M. C., Tsoi, K. K., & Graham, C. A. (2020). An integrated approach of machine learning and systems thinking for waiting time prediction in an emergency department. *International journal of medical informatics*, *139*, 104143.

				SV/M(a)	CP(a)		NN/b)	SVM/b)	CP(b)
Train Oat	LR(DI)	LR(a)	inin(a)	Svivi(a)	GD(a)	LR(D)	(d)MN	SVIVI(D)	GP(n)
I rain Set									
R-squared	0.377	0.352	0.388	0.360	0.400	0.528	0.599	0.568	0.699
MSE	3,607	3,750	3,541	3,707	3,476	2,732	2,323	2,501	1,740
RMSE									
Category 3	22.8	23.2	22.8	23.9	22.7	22.0	21.4	22.3	18.2
Category 4	69.8	71.1	69.1	70.6	68.4	60.5	55.6	57.7	48.1
Category 5	44.8	45.3	49.5	50.0	49.7	20.8	22.7	19.8	31.4
Test Set									
R-squared	0.268	0.249	0.274	0.238	0.271	0.374	0.410	0.401	0.429
MSE	5,618	5,764	5,575	5,851	5,598	4,803	4,528	4,597	4,383
RMSE	·			•				·	
Category 3	45.8	45.9	45.7	46.7	45.6	44.6	44.8	45.1	44.3
Category 4	82.9	84.2	82.6	84.7	82.9	76.4	74.0	74.5	72.5
Category 5	106.5	100.9	103.4	105.1	101.9	89.1	78.7	81.2	86.5
RMSE / SD								0	0010
Category 3	0.499	0.508	0.499	0.523	0.497	0.481	0.468	0.488	0.398
Category 4	0.786	0.801	0.778	0.795	0.77	0.681	0.626	0.65	0.542
Category 5	0.515	0.521	0.569	0.575	0.571	0 239	0.261	0.228	0.361
% Difference between the Model and LR(bl) Train Set									
R-squared	NA	-6.63%	2.92%	-4.51%	6.10%	40.05%	58.89%	50.66%	85.41%
MSE	NA	3.96%	-1.83%	2.77%	-3.63%	-24.26%	-35.60%	-30.66%	-51.76%
RMSE									
Category 3	NA	1.75%	0.00%	4.82%	-0.44%	-3.51%	-6.14%	-2.19%	-20.18%
Category 4	NA	1.86%	-1.00%	1.15%	-2.01%	-13.32%	-20.34%	-17.34%	-31.09%
Category 5	NA	1.12%	10.49%	11.61%	10.94%	-53.57%	-49.33%	-55.80%	-29.91%
Test Set									
R-squared	NA	-7.09%	2.24%	-11.19%	1.12%	39.55%	52.99%	49.63%	60.07%

Kuo, Y. H., Chan, N. B., Leung, J. M., Meng, H., So, A. M. C., Tsoi, K. K., & Graham, C. A. (2020). An integrated approach of machine learning and systems thinking for waiting time prediction in an emergency department. *International journal of medical informatics*, *139*, 104143.

Key Insights

- The stepwise multiple linear regression reduced the mean-square error by almost 15%.
- The other three algorithms had similar performances, reducing the mean-square error by approximately 20%.
- Reductions of 17 –22% in mean-square error due to the utilization of systems knowledge were observed.
- Artificial intelligence may help improve prediction accuracy, but the knowledge of the ED system seems to be more important.

Analysis of Emergency Room Operations

\odot Simulation

- Represent the ED system (operations & patient flows)
- Trained by actual data

$\odot \mbox{Analysis}$ and optimization

- Examine different "what-if" scenarios and potential changes in the system
- Forecast ED performance metrics (e.g., patient waiting time, total length of stay, number of patients in the ED, resource utilization)
- Optimize decisions

Simulation Tool

- We captured all relevant treatment processes
 - Triage
 - Consultation
 - Lab tests

\odot The standard input parameters are

- Time-varying patient arrival rates
- Service-duration probability distributions
- Available resources

The outputs are key performance indicators

- Patient waiting time
- Queue lengths
- Doctor utilization

Model Validation

Proportion of patients in each category

Category 3 patient arrivals per hour by time of day

Category 4 patient arrivals per hour by time of day

Model Validation

Category 3 patient net time from triage to consultation

Category 4 patient net time from triage to consultation

Evaluation of a Fast-Track System

Kuo, Y. H., Leung, J. M., Graham, C. A., Tsoi, K. K., & Meng, H. M. (2018). Using simulation to assess the impacts of the adoption of a fast-track system for hospital emergency services. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 12(3), JAMDSM0073-JAMDSM0073.

Scenarios in the Simulation Study

Scenario	Description
SO	The simulation model adopts the original settings.
S1	The proportions of category 3 and category 4 patients are 20% and 80% respectively (assuming the numbers of category 1 and 2 patients are negligible).
S2	The proportions of category 3 and category 4 patients are 40% and 60% respectively (assuming the numbers of category 1 and 2 patients are negligible).
S 3	All the patient arrival rates decrease by 5%.
S4	All the patient arrival rates increase by 5%.
S5	The average of the consultation time for category 3 patients decreases by 5%.
S 6	The average of the consultation time for category 3 patients increases by 5%.
S7	The average of the consultation time for category 4 patients decreases by 5%
S8	The average of the consultation time for category 4 patients increases by 5%

Kuo, Y. H., Leung, J. M., Graham, C. A., Tsoi, K. K., & Meng, H. M. (2018). Using simulation to assess the impacts of the adoption of a fast-track system for hospital emergency services. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 12(3), JAMDSM0073-JAMDSM0073.

Patient Times in System

Kuo, Y. H., Leung, J. M., Graham, C. A., Tsoi, K. K., & Meng, H. M. (2018). Using simulation to assess the impacts of the adoption of a fast-track system for hospital emergency services. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 12(3), JAMDSM0073-JAMDSM0073.

Tradeoff between Cat 3 & 4 Patient Waiting Time

Kuo, Y. H., Leung, J. M., Graham, C. A., Tsoi, K. K., & Meng, H. M. (2018). Using simulation to assess the impacts of the adoption of a fast-track system for hospital emergency services. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 12(3), JAMDSM0073-JAMDSM0073.

Physician Scheduling

- Challenge: highly stochastic environment (patient arrivals, patient types, required treatments, service times, etc.)
 - \circ Solution: the simulation tool can provide a way to evaluate the system performance.
- However, exploration of all possibilities is practically impossible.
 - For instance, in the ED of PWH, there are 15 physicians on duty each day, which results in $48^{15} \approx 1.65 \times 10^{25}$ feasible physician work schedules.
- Our proposed approach: Workforce optimization model

$$min \sum_{k \in K} \sum_{c \in C} V_k^{c,min} - \sum_{m=1}^P \beta_{km}^c Y_{km}$$

$$\sum_{j \in J} a_{kj} X_j - \sum_{m=1}^{P} Y_{km} \ge Sr_k^{min} \qquad \forall k \in K$$
$$\sum_{j \in J} X_j \le P$$
$$X_j \in \mathbb{Z}^+ \cup \{0\} \qquad \forall j \in J$$
$$Y_{km} \in \{0, 1\} \qquad \forall k \in K \ m = 1 \qquad P$$

Patterns of Optimal Staffing Level

Managerial Insights:

• The profile of the best staffing level shifts

1.5–2 hours behind the arrival pattern.

- Patients have to go through other procedures (registration and triage) before consultation.
- In order to best-utilize the physicians, it is better to schedule them to the periods which the queues are reasonably long (so that most of the time they would not be idle).
- The staffing level changes very frequently over time.
 - The use of staggered shifts can bettermatch physicians with patient demand.

Dynamic Scheduling of Patients

Algorithm 2 General VNS for the problem. 1: Let *x* be an initial solution 2: while number of consecutive iterations without improvement $\leq NO_{imn}$ **do** $k \leftarrow 1$ 3: 4: while $k \leq K$ do $x' \leftarrow$ neighbor solution from $N_k(x)$ 5: $x'' \leftarrow \text{VND}(x')$ 6: if wT(x'') < wT(x) then $x \leftarrow x''$; $k \leftarrow 1$ 7: else $k \leftarrow k+1$ 8:

9:	return	x	
		•••	

Algorithm 5 SBPA-VNS - scenario-based planning approach with
VNS.
1: Let Ω be the set of scenarios with fictive patients
2: while there is an event do
3: $t \leftarrow \text{time at which the event happens}$
4: $x \leftarrow \text{add the newly revealed patients that are ready}$
5: for all scenarios $\omega \in \Omega$ do
6: $x_{\omega} \leftarrow x \cup$ {fictive patients <i>j</i> of scenario ω having $r_j \in$
$[t, t+t_{SH}]$
7: Optimize x_{ω} with the VNS
8: Update x_{ω} by substituting each fictive patient by an idle
time t _{wait}
9: $x_{best(\omega)} \leftarrow$ the solution x_{ω} with the highest consensus func-
tion score
10: Update x with the decisions in $x_{best(\omega)}$

1 1

de Queiroz, T. A., Iori, M., Kramer, A., & Kuo, Y. H. (2023). Dynamic scheduling of patients in emergency departments. *European Journal of Operational Research*, *310*(1), 100-116.

Impact of the Number of Doctors in the ED

	2 doctors		3 doctors		4 doctors		5 doctors		6 doctors	
Method	time	wT	time	wT	time	wT	time	wT	time	wT
ARC-FLOW	34.66	858.87	23.20	49.60	0.09	0.11	0.04	0.00	0.01	0.00
VNS	2.95	871.88	1.13	50.93	0.42	0.21	0.29	0.00	0.23	0.00
REO-QUEUE	< 0.01	1417.91	< 0.01	111.21	< 0.01	4.94	< 0.01	1.36	< 0.01	0.65
REO-VNS	2.33	1191.42	0.76	87.84	0.10	3.17	0.07	1.31	0.07	0.56
SBPA-VNS	592.12	1175.55	478.11	81.19	238.41	3.17	235.32	1.23	231.36	0.56
Red. SBPA-VNS 2 doctors (%)	-	-	19.25	93.09	59.74	99.73	60.26	99.90	60.93	99.95
Red. SBPA-VNS 3 doctors (%)	-	-	-	-	50.13	96.10	50.78	98.49	51.61	99.31
Red. SBPA-VNS 4 doctors (%)	-	-	-	-	-	-	1.30	61.20	2.96	82.33
Red. SBPA-VNS 5 doctors (%)	-	-	-	-	-	-	-	-	1.68	54.47

de Queiroz, T. A., Iori, M., Kramer, A., & Kuo, Y. H. (2023). Dynamic scheduling of patients in emergency departments. *European Journal of Operational Research*, *310*(1), 100-116.

Key Takeaways

- An integrated approach powered by data analytics, simulation, and system
 optimization is effective to evaluate solutions to improve emergency department
 operations.
- Operational data at ED are leveraged to train machine learning and simulation models.
- System knowledge is important for improving the performance of machine learning models.
- Simulation provides hospital administrators with a tool to examine potential solutions for improving patient flows.
- Optimization procedures can be applied to identify good physician rosters and patient schedules.
- The integrated approach can be used not only for emergency department operations but also for other healthcare systems.

Thank you! Any questions?

Acknowledgment:

- HMRF, Research Fund Secretariat, Health Bureau, the Hong Kong Special Administrative Region of the People's Republic of China (Project No: 14151771)
- Staff members at the Prince of Wales Hospital of Hong Kong

Contact:

Yong-Hong Kuo

Email: <u>yhkuo@hku.hk</u>

Website: https://www.dase.hku.hk/people/y-h-kuo

Key publications:

- Kuo, Y. H., Chan, N. B., Leung, J. M., Meng, H., So, A. M. C., Tsoi, K. K., & Graham, C. A. (2020). An integrated approach of machine learning and systems thinking for waiting time prediction in an emergency department. *International Journal of Medical Informatics*, 139, 104143.
- Kuo, Y.H., Leung, J.M.Y., Graham, C.A., So, A.M.C., Meng, H.M., & Tsoi, K.K.F. (2023). Integrated approach of data analytics, simulation, and system optimisation to evaluate emergency department performance in Hong Kong: abridged secondary publication. *Hong Kong Medical Journal*, 29(1), 18-21.
- Kuo, Y. H., Leung, J. M., Graham, C. A., Tsoi, K. K., & Meng, H. M. (2018). Using simulation to assess the impacts
 of the adoption of a fast-track system for hospital emergency services. *Journal of Advanced Mechanical
 Design, Systems, and Manufacturing*, 12(3), JAMDSM0073-JAMDSM0073.
- de Queiroz, T. A., Iori, M., Kramer, A., & Kuo, Y. H. (2023). Dynamic scheduling of patients in emergency departments. *European Journal of Operational Research*, 310(1), 100-116.