

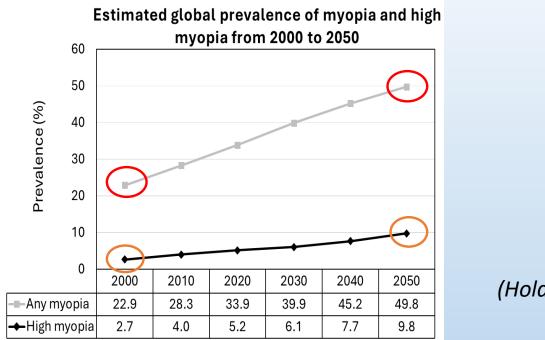
The cost-effectiveness of myopia control to retard the progression from high myopia

Dr Tina Lian Jinxiao Associate Professor School of Optometry The Hong Kong Polytechnic University

> Health Research Symposium 26 Nov 2024

Acknowledgement

Funding: Health and Medical Research Fund (Ref: 16172591)


Co-investigators

- Prof Sarah McGhee
- Prof Maurice Keng Hung Yap
- Dr Rita Sum

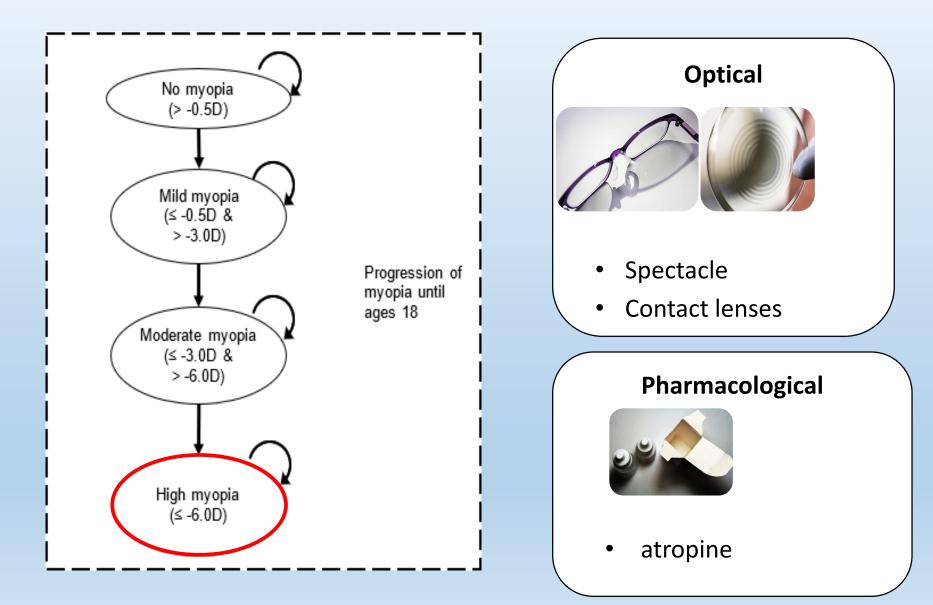
School of Optometry, The Hong Kong Polytechnic University

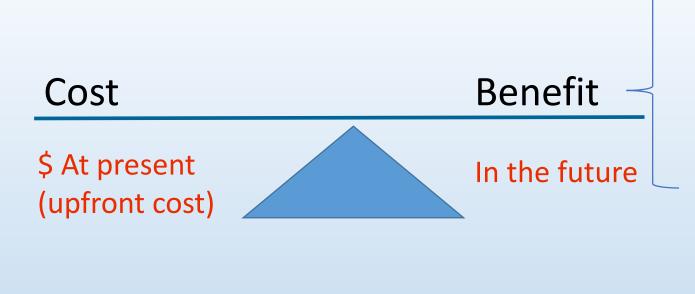
Background

Growing prevalence of myopia

(Holden et al. 2016)

Prevalence of myopia among children in Hong Kong

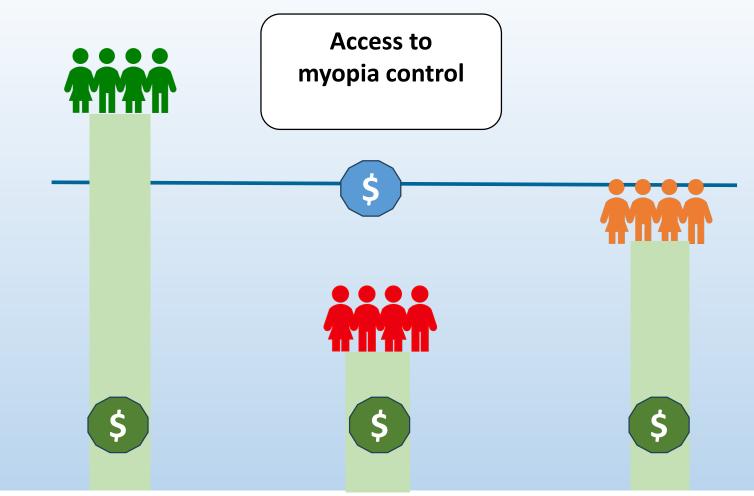

Study	Age	Prevalence
Choy et al. (2020)	6-13	Overall = 37.7%
		Grade 1: 13.3%, Grade 2: 30.0%
		Grade 3: 42.7%, Grade 4: 38.1%
		Grade 5: 53.6%, Grade 6: 54.7%


• High myopia is associated with increased risk of ocular complications

Meta-analysis (Haarman et al. 2020)

	Odds ratio					
	Nuclear cataract	Cortical cataract	Posterior subcapsular cataract	Open angle glaucoma	Retinal Detachment	
Mild myopia	1.79	0.99	1.56	1.59	3.15	
Moderate myopia	2.39	1.06	2.55	2.92	8.74	
High myopia	2.87	1.07	4.55	2.92	12.62	

Myopic control to slow down the progression



Preventing High myopia/ related ocular complications/ severe visual impairment

Improved quality adjusted life years (QALYs)

Economic questions :

Q1. Is the potential benefit from myopia control worth the resources that it would cost (i.e. value for money) from a <u>societal</u> perspective?

Economic questions :

Q2. If it is value for money, would it be cost-effective to subsidise myopia control for children from the government perspective?

Aim: To evaluate the cost-effectiveness of myopia control through optical approach in children

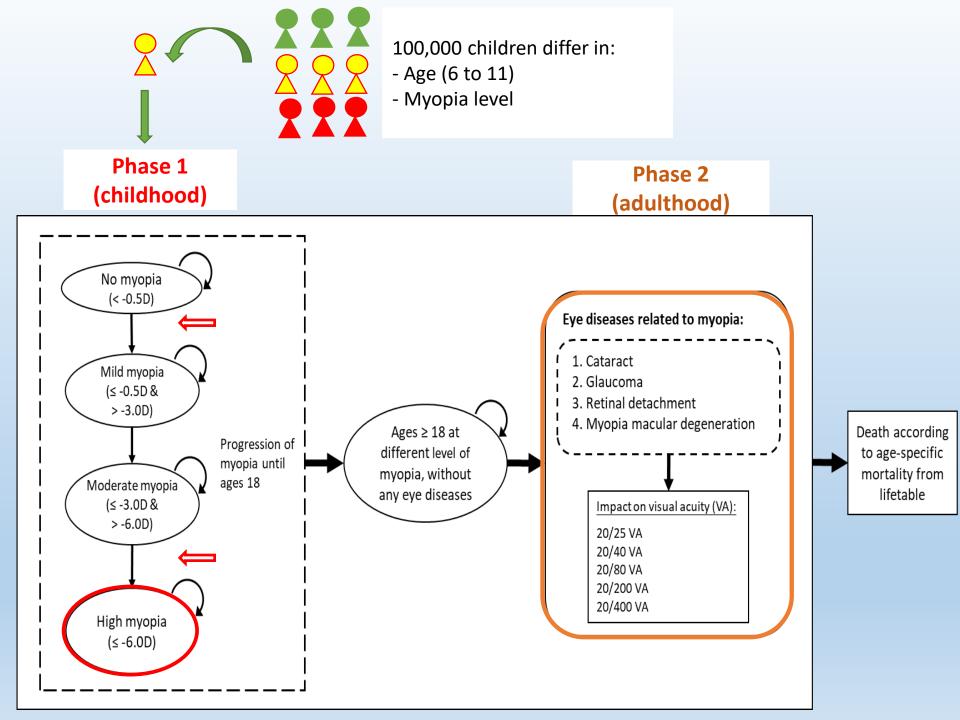
Objectives:

- 1) To build a cost-effectiveness model to determine whether myopia control is value for money from a societal perspective;
- 2) To examine whether subsidising myopia control is costeffective from a government perspective to enable equitable access

Methods

- Myopia control intervention
 - Defocus Incorporated Multiple Segment (DIMS), spectacle lenses as an example
 - Slow myopia progression in spherical equivalent refraction (SER) by 52% (Lam et al. 2020)
 - Provide to eligible children
 - Aged 6 to 15
 - SER -6.0 to -0.5 D

Package cost around HK\$4,000 (including a pair of lenses and one follow-up at 6-month) • Compared strategies


Q1. Is myopia control value for money from a <u>societal</u> perspective?

Strategy 1	Strategy 2
Myopia control	No myopia control
(100% uptake)	(0% uptake)

Q2. If it is value for money, would it be cost-effective to subsidise myopia control for children from the **government** perspective?

Strategy 1	Strategy 2
Full subsidy	No subsidy
(80% uptake)	(10% uptake)

- Cost-effectiveness modelling
 - ➤ an individual-based state-transition model
 - ➤ based on natural disease progression
 - ➤ simulate the impact across life time

• Model Parameters – effectiveness

Local data:

- Prevalence and progression of myopia
- Effectiveness of DIMS lens
- Compliance rate: myopia control, referral and follow up for ocular complications
- Mortality rate

Overseas data:

- Annual transition probabilities
- Impact of ocular complications on visual acuity
- Utility decrement: severity of myopia, ocular complications and severe visual impairment

• Model parameters – costing (local data)

List of costs considered under each perspective

		Societal perspective	Government perspective
1)	Direct cost: optical correction due to myopia	\checkmark	×
2)	 Direct cost myopia control intervention treatment for myopia-related eye diseases 	\checkmark	\checkmark
3)	Productivity losssevere visual impairment	\checkmark	×
4)	Patient costtime and travelling costInformal care	\checkmark	×
5)	Co-payment for ophthalmologist follow up / treatment	×	\checkmark
6)	Disability allowance from Government	×	\checkmark

Incremental cost-effectiveness ratio (ICER)

 $ICER = \frac{\text{Difference in costs between A \& B (A-B)}}{\text{Difference in benefits between A & B (A-B)}}$

Extra cost for extra unit of benefit, i.e. cost per extra quality-adjusted life year (QALY) gained

• Both cost and effectiveness discounted at 3.5%

One-way and probabilistic sensitivity analysis

Results

Part 1. Is myopia control value for money from a <u>societal</u> perspective?

Table 1: Estimated vision problems developed over lifetime with myopia control using DIMSand without control

Proportion	Without myopia control (0% uptake)	With myopia control (100% uptake)		
High myopia	10.7%	5.9% 👃		
Cataract	72.6%	71.6%		
Retinal detachment	2.2%	1.8%		
Myopic macular degeneration	6.5%	5.5%		
Open angle glaucoma	7.0%	6.3%		
Severe visual impairment (VA <20/200)	2.7%	2.2%		

Myopia control intervention can reduce (per 100,000 children)

~ 4800 high myopia

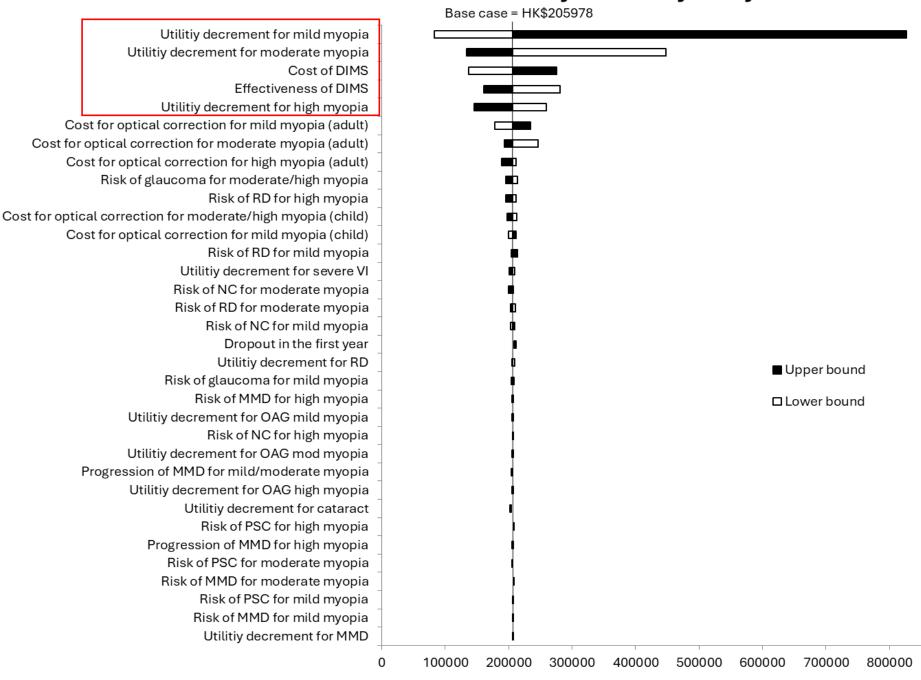
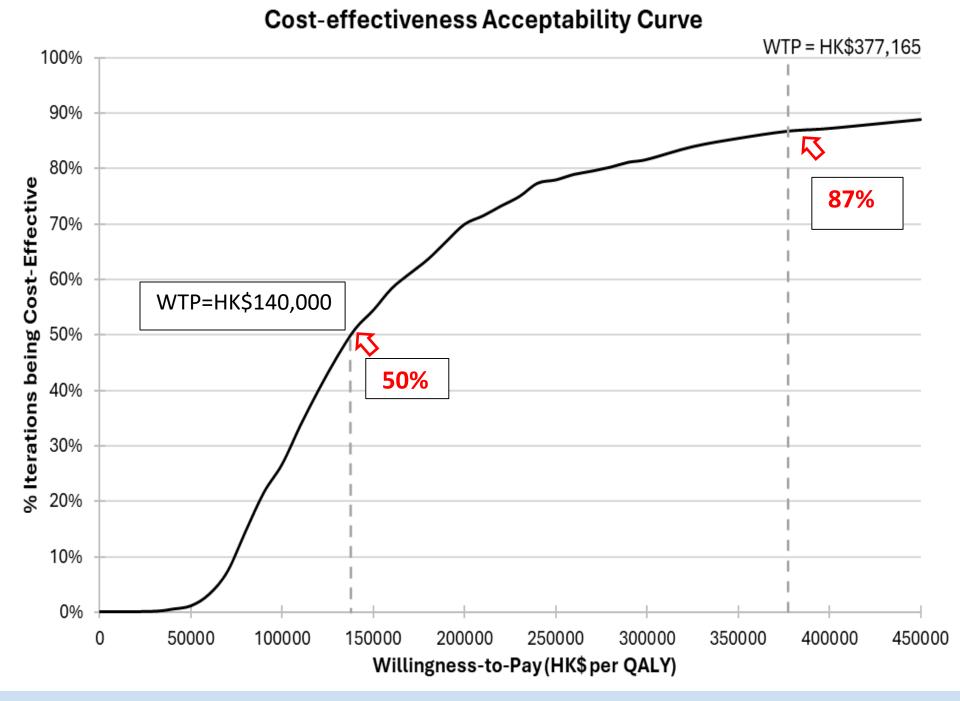

~ 500 severe visual impairment

Table 2: Long-term costs and consequences of myopia control using DIMS and no myopia control from the societal perspective


	Cost* (HK\$)	Incremental cost (HK\$)	QALYs*	QALYs gained	ICERs (HK\$) [‡]
Base case – Discount at 3.5% on	both costs	s and QALYs			
No myopia control (0% uptake)	47298		25.84		
With myopia control (100% uptake)	57387	10089	25.89	0.05	205978
 * Average value per individual across lifetime ‡ May not exactly equal to the costs divided by QALYs, d 	ue to rounding o	of the decimals			

- Incremental cost per extra QALY gained
- < World Health Organisation (WHO) threshold of <u>one GDP</u> per capita (HK\$377,165 in 2019)

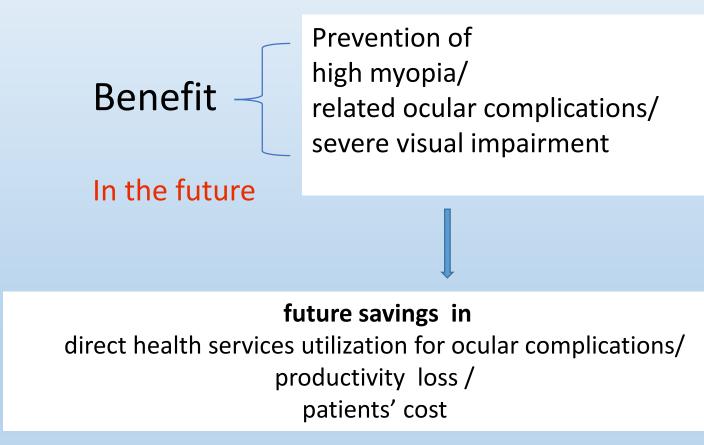
Tornado chart for one-way sensitiviy analyses

Willingness-to-Pay(HK\$ per QALY)

Results

Part 2. If it is value for money, would it be costeffective to subsidise myopia control for children from the <u>government perspective</u>? Table 3: Long-term costs and consequences of myopia control with and without subsidy from the government perspective

	Cost* (HK\$)	Incremental cost (HK\$)	QALYs*	QALYs gained	ICERs (HK\$) [‡]
Base case – Discount at 3.5% on b	ooth costs and	I QALYs			
No subsidy (10% uptake)	2971		25.85		
Full subsidy (80% uptake)	11638	8668	25.88	0.04	232049


* Average value per individual across lifetime

‡ May not exactly equal to the costs divided by QALYs, due to rounding of the decimals

Discussion

First cost-effectiveness model in the literature:

 comprehensive evaluation across life-time
 good validation

The WHO threshold for a highly cost-effective procedure

- = 1 x annual per capita GDP
- = HK\$377,165 per QALY (in 2019)
- **Myopia control using DIMS vs** no myopia control: <u>highly cost-</u> <u>effective</u> from the <u>societal</u> perspective providing to all eligible children aged 6-11.
 - ICER=HK\$205,978/QALY
 - > even considering the uncertainties around the parameters

- Full subsidy on myopia control vs no subsidy: <u>highly cost-</u> <u>effective</u> from <u>government</u> perspective providing to all eligible children aged 6-11
 - > ICER=HK\$232,049/QALY
 - Less than WHO threshold of 1 GDP per capita

Limitation: some of the data incorporated into the model was not available in HK, e.g. utility decrement values, transition probabilities, uptake rate of myopia control with subsidy

Implication

- A strategic plan for myopia control is undoubtedly needed to reduce the disease and economic burden of myopiarelated complications and vision loss.
- Providing economic evidence for decision-makers to address the increasing public health problem and equity issues in accessing myopia control.

Conclusion

 Myopia control by use of DIMS lenses is potentially cost-effective for society. A government-subsidised programme could be a cost-effective option to improve equity of access.

Publication

 So C, Lian J, McGhee SM, Sum RWM, Lam AKC, Yap MKH. Lifetime cost-effectiveness of myopia control intervention for the children population. *Journal of global health* 2024;14:04183. doi: 10.7189/jogh.14.04183

References

- Choy BNK, You Q, Zhu MM, Lai JSM, Ng ALK, Wong IYH. Prevalence and associations of myopia in Hong Kong primary school students. Jpn J Ophthalmol. 2020;64(4):437-49.
- Haarman AEG, Enthoven CA, Tideman JWL, Tedja MS, Verhoeven VJM, Klaver CCW. The complications of myopia: a review and meta-analysis. Invest Ophthalmol Vis Sci. 2020;61(4):49.
- Holden BA, Fricke TR, Wilson DA, Jong M, Naidoo KS, Sankaridurg P, et al. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology. 2016;123(5):1036-42.
- Lam CSY, Tang WC, Tse DY, Lee RPK, Chun RKM, Hasegawa K, et al. Defocus Incorporated Multiple Segments (DIMS) spectacle lenses slow myopia progression: a 2-year randomised clinical trial. Br J Ophthalmol. 2020;104(3):363-8.

Thank you