

Harnessing the power of proteogenomics in biobanks to advance precision health

Zhengming CHEN

Richard Peto Chair Professor in Epidemiology Big Data Institute & Oxford Population Health University of Oxford Zhengming.chen@ndph.ox.ac.uk

Hong Kong Health Research Symposium, 26th Nov 2024

All-cause mortality at ages 35-69

Main COVID deaths in China took place during 12/2022-02/2023

Source: WHO mortality & UN population estimates

Lung cancer mortality at ages 35-69

OXFORD POPULATION THEALTH Driven entirely by changes in cigarette consumption

Source: WHO mortality & UN population estimates

Rapidly falling stroke mortality in UK/USA: not fully explained

China: >2M stroke deaths/year, with large regional variations

Source: WHO mortality & UN population estimates

Large, unexplained cancer mortality variation

Nasopharynx cancer

Oesophagus cancer

Females only, so little effect of tobacco or alcohol (Red = high mortality >10x Green = low mortality)

Aetiology of complex human diseases

Complex interplays of "nature" & "nurture", which may differ between populations **Need prospective cohort studies in diverse populations**

Need new evidence base to advance precision health

- Better understanding of human biology and disease aetiology
- Improved disease prediction, detection and diagnosis
- Identification of new or repurposing drug targets
- Reliable patient stratification for more targeted management

Proteomics will play a key role in empowering such development

Human Proteome and Health

Schrodinger's 1944 monograph "What is life" predicted the importance of proteome as a key link between hereditary mechanism, growth and disease.

AlphaFold—for predicting protein structures

RESEARCH ARTICLE

PROTEINS

Protein structure prediction using multiple deep neural networks in the 13th Critical Assessment of Protein Structure Prediction (CASP13)

Andrew W. Senior¹ | Richard Evans¹ | John Jumper¹ | James Kirkpatrick¹ | Laurent Sifre¹ | Tim Green¹ | Chongli Qin¹ | Augustin Žídek¹ | Alexander W. R. Nelson¹ | Alex Bridgland¹ | Hugo Penedones¹ | Stig Petersen¹ Karen Simonyan¹ | Steve Crossan¹ | Pushmeet Kohli¹ | David T. Jones^{2,3} | David Silver¹ | Koray Kavukcuoglu¹ Demis Hassabis¹

Integrated proteogenomic analyses will be transformative, facilitated by new technology

From proteins to proteome

Mass spectrometrybased proteomics Antibody-based affinity proteomics 8

"Gold" standard

> **OLINK Explore**

SomaScan

Carrasco-Zanini J. et al. Curr Diab Rep. 2020 K Suhre, et al. Nature Review (2021)

Application of proteomics in population studies

Overview of proteomics in population biobanks

OXFORD POPULATION HEALTH Olink Explore HT: ~5400 proteins; SomaScan v5: ~10,000 proteins

Characteristics of proteomics assays in biobanks

Study name	Platform	Ancestry	Sample size	No. of proteins
UK Biobank	OLINK	European	34,557	2,923
		African	931	
		Central/South Asian	920	
		Middle Eastern	308	
		East Asian	262	
		Admixed American	97	
deCODE genetics	OLINK & SomaScan	European	35,559	4,719
Fenland	OLINK & SomaScan	European	10,708	4,775
ARIC	OLINK & SomaScan	European	7,213	4,657
		African American	1,871	
Interval study	OLINK & SomaScan	European	3,301	3,622
EPIC-Norfolk	OLINK	European	1,180	2,923
KORA	OLINK & SomaScan	European	997	1,124
Qatar Biobank	SomaScan	Middle Eastern	2,935	1,301
Kyoto University	SomaScan	East Asian	1,823	4,196
Japan Covid-19 task force	OLINK	East Asian	1,384	2,923
China Kadoorie Biobank	OLINK & SomaScan	East Asian	3,970	7,139

CKB is in the process of securing funding to scale up to 50-100K participants

Study website: www.ckbiobank.org

China Kadoorie Biobank (CKB)

A unique combination of scale, breadth and depth

Large

>512,000 men and women aged 35-74 years recruited in 2004-08 from 10 diverse areas across China

Deep

Extensive information on social, lifestyle, environmental, clinical measurements and biological factors, along with reliable disease characterisation and sub-phenotyping

Long

Sufficient duration of follow-up for large numbers of fatal and non-fatal health outcomes to have occurred

Accessible

Data are released periodically to the research community

CKB: A uniquely rich and high quality resource

- **Population diversity:** 10 areas, with good representativeness
- High data quality: no missing values, no logic errors
- Complete sample collection: 99.98%, with no loss, damage or thaw
- **Complete follow-up:** <1% lost to follow up since baseline survey
- Medical record linkages: ~100K deaths and >3.5 million ICD-10 coded episodes of hospitalisation for >5000 different disease types
- Well phenotyped diseases: e.g. ~95% stroke cases confirmed by brain imaging, with detailed adjudications for several major diseases
- Three repeat assessments: >80% responded, with new enhancements

CKB: Scope of research activities and achievements

Risk exposures

~600 papers

Lancet Glob Health J Diabetes Investig Lancet Reg Health West Pac Nat Commun AMA Cardio Public Healt ^J Epidemiol Comm_t J Am Coll Cardiol

Health outcomes

>100 papers led by external collaborators and open access researchers

CKB: LDL-cholesterol and risk of stroke types

Sun LL, et al Nature Med 2019

Causal associations of blood lipids with risk of ischemic stroke and intracerebral hemorrhage in Chinese adults

Luanluan Sun¹, Robert Clarke[®]^{1*}, Derrick Bennett¹, Yu Guo², Robin G. Walters³, Michael Hill³, Sarah Parish³, Iona Y. Millwood³, Zheng Bian², Yiping Chen³, Canqing Yu⁴, Jun Lv⁴, Rory Collins¹, Junshi Chen⁵, Richard Peto¹, Liming Li⁴, Zhengming Chen[®]^{1*}, and on behalf of the China Kadoorie Biobank Collaborative Group⁶

CKB: HDL-cholesterol, CETP and risk of CVD

<u>CETP PheWAS:</u> Relation of CETP genetic defect (rs2303790) with CVD and other diseases

Vascular disease - <u>No effect</u> (CETP defect vs not: RR=1.0 (0.9-1.1)

Eye disease - **possible side effect** (CETP defect vs not: RR=1.45 (1.13-1.80)

JAMA Cardiology | Original Investigation

Association of *CETP* Gene Variants With Risk for Vascular and Nonvascular Diseases Among Chinese Adults

Iona Y. Millwood, DPhil; Derrick A. Bennett, PhD; Michael V. Holmes, PhD; Ruth Boxall, MSc; Yu Guo, MSc; Zheng Bian, MSc; Ling Yang, PhD; Sam Sansome, BSc; Yiping Chen, DPhil; Huaidong Du, PhD; Canqing Yu, PhD; Alex Hacker, MA; Dermot F. Reilly, PhD; Yunlong Tan, MBBS; Michael R. Hill, PhD; Junshi Chen, MD; Richard Peto, FRS; Hongbing Shen, PhD; Rory Collins, FRS; Robert Clarke, MD; Liming Li, MPH; Robin G. Walters, PhD; Zhengming Chen, DPhil; for the China Kadoorie Biobank Collaborative Group

Consistent with trials showing no net effects of HDL-C raising

CKB: Proteomics Pilot Project

Proteomic assays

- ~3000 Olink & >7000 SomaScan proteins measured
- 4000 participants (2000 IHD & 2000 sub-cohort)

Key research areas (>30 active projects)

- Genetic architecture of proteins in diverse populations
- Drug target discovery (eg, IHD, DM, stroke, HF)
- Risk prediction & early diagnosis (eg, IHD, DM)
- Mechanisms linking exposure (eg, BMI, smoking) to specific diseases
- Biological aging clocks, frailty and multi-morbidity
- Comparative study of Olink-SomaScan platforms

Organisation of annual symposium on "Human Proteome and Health"

CKB: >15 recently completed proteomics projects

Eur J Epidemiol 2023

GENETIC EPIDEMIOLOGY

Conventional and genetic associations of adiposity with 1463 proteins in relatively lean Chinese adults

Pang Yao¹ · Andri Iona¹ · Christiana Kartsonaki^{1,2} · Saredo Said¹ · Neil Wright¹ · Kuang Lin¹ · Alfred Pozarickij¹ · Iona Millwood^{1,2} · Hannah Fry^{1,2} · Mohsen Mazidi¹ · Yiping Chen^{1,2} · Huaidong Du^{1,2} · Derrick Bennett^{1,2} · Daniel Avery^{1,2} · Dan Schmidt^{1,2} · Pei Pei³ · Jun Lv^{3,4} · Canqing Yu^{3,4} · Michael Hill¹ · Junshi Chen⁵ · Richard Peto¹ · Robin Walters^{1,2} · Rory Collins¹ · Liming Li^{3,4} · Robert Clarke¹ · Zhengming Chen^{1,2} © on behalf of China Kadoorie

JACC 2023

Plasma Proteomics to Identify Drug Targets for Ischemic Heart Disease

Mohsen Mazidi, PhD,^{4,e} Neil Wright, PhD,^{3,e} Pang Yao, PhD,^a Christiana Kartsonaki, DPhu,^{a,b} Iona Y. Millwood, DPhu,^{a,b} Hannah Fry, BSc,^{a,b} Saredo Said, PhD,^a Alfred Pozarickij, PhD,^a Pei Pei, MSc,^c Yiping Chen, DPhu,^{a,b} Daniel Avery, MSc,^a Huaidong Du, PhD,^{a,b} Dan Valle Schmidt, MSc,^a Ling Yang, PhD,^{a,b} Jun Lv, PhD,^{cd,e} Canqing Yu, PhD,^{cd,e} Junshi Chen, MD,^f Michael Hill, DPhu,^{a,b} Michael V. Holmes, PhD,^a Joanna M.M. Howson, PhD,⁸ Richard Peto, MD,^a Rory Collins, MBBS,^a Derrick A. Bennett, PhD,^{a,b} Robin G. Walters, PhD,^{a,b} Liming Li, MPH,^{cd,e} Robert Clarke, PhD,^a Lengming Chen, DPhu,^{a,b}

Diabetes Care 2024

Proteomic analyses in diverse populations improved risk prediction and identified new drug targets for diabetes

Pang Yao¹, Andri Iona¹, Alfred Pozarickij¹, Saredo Said¹, Neil Wright¹, Kuang Lin¹, Iona Millwood^{1,2}, Hannah Fry^{1,2}, Christiana Kartsonaki^{1,2}, Mohsen Mazidi¹, Yiping Chen^{1,2}, Bowen Liu¹, Ling Yang^{1,2}, Daniel Avery^{1,2}, Dan Schmidt^{1,2}, Dianjianyi Sun,^{3,4} Pei Pei³, Jun Lv^{3,4}, Canqing Yu^{3,4}, Michael Hill¹, Derrick Bennett^{1,2}, Robin Walters^{1,2}, Liming Li^{3,4}, Robert Clarke¹, Huaidong Du^{1,2}, Zhengming Chen^{1,2} on behalf of China Kadoorie Biobank

Nature Med 2024

Proteomic aging clock predicts mortality and risk of common age-related diseases in diverse populations

M. Austin Argentieri^{1,2}, Sihao Xiao¹, Derrick Bennett¹, Laura Winchester³, Alejo J. Nevado-Holgado³, Ashwag Albukhari⁴, Pang Yao¹, Mohsen Mazidi¹, Jun Lv⁵, Liming Li⁶, Cassandra J. Adams⁷, Robert Clarke¹, Najaf Amin¹, Zhengming Chen^{1*}, Cornelia M. van Duijn^{1*}

Eur J Epidemiol 2024

Risk prediction of ischemic heart disease using plasma proteomics, conventional risk factors and polygenic scores in Chinese and European adults

Mohsen Mazidi¹ · Neil Wright¹ · Pang Yao¹ · Christiana Kartsonaki¹ · Iona Y. Millwood¹ · Hannah Fry¹ · Saredo Said¹ · Alfred Pozarickij¹ · Pei Pei² · Yiping Chen¹ · Baihan Wang¹ · Daniel Avery¹ · Huaidong Du¹ · Dan Valle Schmidt¹ · Ling Yang¹ · Jun Lv^{2,3,4} · Canqing Yu^{2,3,4} · DianJianYi Sun^{2,3,4} · Junshi Chen⁵ · Michael Hill¹ · Richard Peto¹ · Rory Collins¹ · Derrick A. Bennett¹ · Robin G. Walters¹ · Liming Li^{2,3,4} · Robert Clarke¹¹ · Zhengming Chen¹ on behalf of China Kadoorie Biobank Collaborative Group

Commun Biology 2024

Conventional and genetic associations of general and central

adiposity with 2944 proteins in relatively lean Chinese adults

Andri Iona^{1*}, Pang Yao^{1*}, Alfred Pozarickij¹, Saredo Said¹, Neil Wright¹, Kuang Lin¹, Iona Millwood^{1,2}, Hannah Fry^{1,2}, Christiana Kartsonaki^{1,2}, Mohsen Mazidi¹, Yiping Chen^{1,2}, Fiona Bragg¹, Bowen Liu¹, Ling Yang^{1,2}, Daniel Avery^{1,2}, Dan Schmidt^{1,2}, Dianjianyi Sun,^{3,4,5} Pei Pei³, Jun Lv^{3,4,5}, Canqing Yu^{3,4,5}, Michael Hill¹, Derrick Bennett^{1,2}, Robin Walters^{1,2}, Liming Li^{3,4,5}, Robert Clarke¹, Huaidong Du^{1,2}, Zhengming Chen^{1,2} on behalf of China Kadoorie Biobank Collaborative Group ⁺

Nature Commun 2024 (accepted)

Comparative studies of genetic and phenotypic associations for 2,168 plasma proteins measured by two affinity-based platforms in 4,000 Chinese adults

Baihan Wang¹, Alfred Pozarickij¹, Mohsen Mazidi¹, Neil Wright¹, Pang Yao¹, Saredo Said¹, Andri Iona¹, Christiana Kartsonaki^{1,2}, Hannah Fry^{1,2}, Kuang Lin¹, Yiping Chen^{1,2}, Huaidong Du^{1,2}, Daniel Avery^{1,2}, Dan Valle Schmidt^{1,2}, Canqing Yu^{3,4,5}, Dianjianyi Sun^{3,4,5}, Jun Lv^{3,4,5}, Michael Hill¹, Liming Ll^{3,4,5}, Derrick A Bennett^{1,2}, Rory Collins¹, Robin G Walters^{1,2}, Robert Clarke¹, Iona Y Millwood^{1,2}, Zhengming Chen^{1,2}, on behalf of China Kadoorie Biobank

Nature Genetics (under revision)

Ancestry diversity in the genetic determinants of the human

plasma proteome and associated new drug targets

Saredo Said¹, Alfred Pozarickij¹, Kuang Lin¹, Sam Morris¹, Christiana Kartsonaki^{1,2}, Neil Wright¹, Hannah Fry^{1,2}, Yiping Chen^{1,2}, Huaidong Du^{1,2}, Derrick Bennett^{1,2}, Daniel Avery^{1,2}, Dan Valle Schmidt^{1,2}, Liming Li^{3,4,5}, Jun Lv^{3,4,5}, Canqing Yu^{3,4,5}, Dianjianyi Sun^{3,4,5}, Pei Pei⁴, Junshi Chen⁶, Michael Hill¹, Richard Peto¹, Rory Collins¹, Robert Clarke¹, Iona Y Millwood^{1,2}, Zhengming Chen^{1,2}, Robin G Walters^{1,2}, on behalf of China Kadoorie Biobank

CKB: Key proteomics-related research findings

- Levels of plasma proteins affected by genetic, non-genetic, as well as environmental factors
- Proteins greatly outperformed PGS for prediction of many diseases
- In CKB, ~50% of pQTLs signals are distinct from those in Europeans
- Genetic (MR, colocalisation) analyses helped establish causality and identify potential drug targets for IHD, stroke, T2D, HF and obesity
- Protein-based ageing clocks reliably predicted age-related traits and risks of multiple diseases and all-cause mortality
- Complementarity of the two affinity-based assay platforms

Using conventional, genetic, ML and downstream analyses, with replication and/or combined analyses in UKB and other studies

CKB: Exposome profiles of Olink and SomaScan proteins

CKB: Selected exposome characteristics by panel

Olink

SomaScan

Iona, A et al doi: https://doi.org/10.1101/2024.10.23.24315975 (pre-print)

CKB: Adiposity and protein levels, Olink panel

CKB: Selected functions of top BMI-related proteins

P Yao, et al. Eur J Epidemiol 2023

CKB: Olink proteins significantly associated with T2DM

With great overlap of **33 proteins** across three outcome measures

CKB: Discovery of novel drug targets for T2D

CKB: Proteomics improve risk prediction of all-cause mortality (analyses restricted to 2000 subcohort participants)

Bennett D, et al. Nat Ageing (under review)

CKB: Proteomics improve risk prediction of IHD

For Olink proteins, the associations were externally replicated in the UKB

CKB: Discovery of drug targets for IHD, Olink panel

FURIN ASGRI MMP3 F2R

RGAR/

虱慢性病前瞻性研究

CKB: Assessing causal associations of proteins with IHD

Manuscript under preparation

CKB: Distinct pQTLs identified in East Asians

- No *cis*-pQTLs identified in UKB for ALDH2 and GLIPR1
- Lead variant within the structural gene in CKB but not UKB for 155 other proteins
- >50% of pQTL signals appear distinct from those in UKB
 - $\circ~$ 18% were excluded in UKB due to low MAF
 - Potentially included a more common variant (D' > 0.95)

UKB / CKB: Protein-based biological ageing clock

Nature Med 2024

Article

https://doi.org/10.1038/s41591-024-03164-7

Proteomic aging clock predicts mortality and risk of common age-related diseases in diverse populations

Received: 14 September 2023	A list of authors and their affiliations appears at the end of the paper		
Accepted: 27 June 2024	_		
Published online: 08 August 2024	Circulating plasma proteins play key roles in human health and can		

1) Main analytic approaches

2) Proteomics ageing clocks

3) ProtAgeGap distributions

ProtAgeGap can predict >20 age-related traits (eg, bone density, renal function, telomere length)

Protein ageing clock can predict multiple disease risks

a) UKB

Promises of proteomic profiling in biobanks

(in combination with genetic and other phenotypic data)

- Improve understanding of human biology and disease aetiology
- Identify novel pathways representing potential drug targets
- Enhance risk prediction and early diagnosis of diseases
- Reveal mechanisms linking lifestyles and traits with diseases
- Clarify molecular basis of genetic variants associated with disease
- Improve patient stratification, incl. drug response prediction, for more targeted management

KEY NEEDS: Turn samples into data

CKB Research Partners and Funders

NSFC

wellcome^{trust}